JA

ANILAM
Anilam Electronics Corporation

ADVANCED VARIABLE
(PARAMETRIC) PROGRAMMING

ADVANCED VARIABLE (PARAMETRIC) PROGRAMMING or...
How to Write Your Own Custom Canned Cycles!

It is possible to use the Crusader to develop custom canned cycles that are applicable to
your specific needs. This section will show you how.

The Crusader control, with Advanced Software System |, has the ability to store, calculate
and act upon the results of variables. This section of the manual is to be used as a guideline
to help explain the more advanced capabilities of the Crusader. Several programming
examples using variables are given.

- Do not attempt the advanced variable programming methods explained here until you
are thoroughly familiar with all aspects of the Crusader already discussed. Anilam recom-
mends that customers should try advanced variable programming only after using the
Crusader control for at least one year.

TABLE OF CONTENTS

SECTION 1: Tool Offsets Using Variables
SECTION 2a: Zero Shift (AUX 1101) Using Variables

SECTION 2b: Calling Subroutines Using Variables .

SECTION 3: AUX Code Definitions For Manipulating Variables

SECTION 4: Logic Testing Performed On Variables .

SECTION 5: Conditional Loops And Branching (Go To Statements).

SECTION 6: User Programmable Modal Subroutines (Custom Modal Canned Cycles)

b

SECTION 1:
TOOL OFFSETS USING VARIABLES

.

Section 1

Pg.2

When cutter diameter compensation is used to
rough and finish a part by using the same tool with
two or more diameters (or tool tip radius) offsets,
the program is structured as follows:

The 2 inch square window would be machined
— first leaving .010 stock, then .005 stock, then
making a finish cut using the program.

The program will work as written, but the operator
will have to enter the Z axis tool length offset in
events 2, 10, and 14. In a longer program with
several tools, this procedure can be clumsy and can
lead to operator errors.

A more convenient and safer way to program this
type of operation would be to enter a variable which
is equal to the tool length offset and, each time the
offset is needed, state the variable. For example:

MAIN PROGRAM

VB0 = -1.345
T1001
X.520 Z V80

SUBROUTINE

100. Sub 1 (Subroutine
remains the same
as previous program)

112. End

MAIN PROGRAM SUBROUTINE
1. T1001 100. Sub 1
2. X.520 Z-1.345 101. F10.

3. =0 101. Z-.2 FA
4. ZORA 103. G41

5. X0 YO RA 104. Y1. FA
6= Ti 105. X-1. FA
7. Z1RA 106. Y-1. FA
8. CALL1 107. X1. FA
9. T1001 108. Y1.0 FA
10. X.510 Z-1.345 109. XO FA
e 110. G40
12. CALL 1] 870
13. T1001 112. END
14. X.500 Z-1.345

15. T

16. CALL 1

17,510

18. ZO RA

19. X0 YO RA

20. END

* (T1001 is an offset definition block for diameter
and/or length compensation. All examples can be
used on lathe or mill Crusaders.)

1
|
| |oo0
|
I

FIGURE 1-1

TO

Z0 RA

X0 YO RA
T1

Z1 RA
CALL 1
T1001
X.510 Z V80
&l

CALL 1
T1001

X.500 Z V80
il

CALL 1

TO

Z0 RA

X0 YO RA
END

OOl RO B COE I S

NN = = o a a d g A a o
SHACAL OO EC ST B OIS |

-

o

Section 1

Pg.3

In this example Event 1 sets V80 equal to the
tool length offset. In the places where the tool
length offset value is needed, V80 is used and the
control will use the value of V80 (-1.345) as the
tool length offset. This eliminates the operator hav-
ing to enter the tool length offset into the program
in several places. This is especially desirable if
the job is a repeat order and the tool length is dif-
ferent or if a new tool with a new offset is used.
The new variable only needs to be entered once
and the tool length offset is effectively changed
3 times in the program.

To enter events 3, 11, and 15 press: X.500 ZV80
EVENT ENTER. When Z is pressed, the Z light

will come on and zeros will be displayed in the
Z axis. When V is pressed, the V light will come
on and only 2 digits in the Z axis will stay on in-
dicating a 2 digit variable is to be entered. As 80
is pressed, it will automatically be entered in Z
(which is the selected axis).

Use V80 through V94 when working with this
feature, as these are not presently used by built-
in canned cycles, which could alter their value.

The value of a variable can be looked at any
time by pressing SINGLE STEP, DISPLAY POSI-
TION (turn it off), V80 (or the variable number
which you want to see).

SECTION 2a:
ZERO SHIFT (AUX 1101) USING VARIABLES

Section 2a

Pg.5

When a multiple zero shift feature is used with
several tools, then program is constructed as
follows:

MAIN PROGRAM MAIN PROGRAM

1. T1001 42. CALL2

gz i 43. A1101

3. T1002 44. X8. Y0 Z-2.345

4. Z-2.345 45. CALL2

5. T1003 46. TO

6. 2-3.345 47. Z0 RA

Tone ATER 48. X0 YO RA

8. X0 YO0 Z0 49. T3

9. TO 50. CALL3

10. Z0 RA 51. A1101

11. X0 YO RA 52. X2. Y0 Z-3.345

oG 53. CALL3

13. CALL 1 54. A1101

14. A1101 55. X4. YO Z-3.345

15. X2. YO Z-1.345 56. CALL3

16. CALL1 57. A1101

17. A1101 58. X6. Y0 Z-3.345

18. X4. YO Z-1.345 59. CALL3

19. CALL1 60. A1101

20. A1101 61. X8. Y0 Z-3.345

21. X6. Y0 Z-1.345 62. CALL3

22. CALLT 63. TO

23. A1101 64. Z0 RA

24. X8.Y0 Z-1.345 65. X0 YO RA

25. CALL1 66. END

26. A1101

27. X8.Y0 Z-1.345

= SUBROUTINES

29. TO

30. Z0 RA SUB 1: END (Motion to

31. X0 YO RA cut part with

ok SUB 2 :rj\lol;1l)\ﬁ tion t
: on 1o

S e cut pértciwith

34. A1101 Tool 2

B> e S SUB 3: END (Motion to

36. CALL2 cut part with

37. A1101 Tool 3)

38. X4.Y0 Z-2.345

39. CALL2

40. A1101

41. X6. Y0 Z-2.345
The above program will produce the parts
shown. The total length offsets must be entered in

several places in the program for use each time
the zero shift featured is activated.

A more efficient program can be written using
variables. Two examples are given below:

MAIN PROGRAM MAIN PROGRAM

= Vel=—1345 41. CALL2
2. VB2= -2345 42, TO

3. V83 = —3345 43. ZORA

4. T1001 44. X0 YO RA
5. Z V8l 45. VO =80

6. T1002 46. A5043

7. Zve2 47. T3

8. T1003 48. CALL3

9. Zvs83 49. CALL4

10. A1101 50. CALL3

11. X0 YO Z0 51. CALLS

12. ToO 52. CALL3

13. Z0 RA 53. CALL6

14. X0 YO RA 54. CALL3

15. VO =80 55. CALL7

16. A5041 56. CALL3

17. T4 57. TO

18. CALL1 58. ZO RA

19. CALL4 59. X0 YO RA
20. CALL1 60. END

21. CALL5

22, CALL{

S ot SUBROUTINES
24. CAALL1 400. SUB 4

25. CALL7 401. A1101

26. CALL1 402. X2. YO Z V84
27. T0 403. END
SieuE 500. SUB 5

I D0 R 501. A1101
Sl 502. X4. YO Z V84
31. A5042 o Co

32. T2

e 600. SUB 6
e 601. A1101
S 602. X6. YO Z V84
36. CALLS 603. END

37. CALL2 700. SUB 7

38. CALL6 701. A1101

39. CALL2 702. X8. YO Z V84
40. CALL7 703. END

Section 2a

SO0

ole
(——

OO0

L
=

000
-

——

000
OO

)

000
0

=

(9] Zp00 4000

In this example, variables 81-83 are set to the
tool length offsets of tools 1-3 respectively.
Subroutines 1-3 remain the same as the previous
program (tool motion for tools 1-3).

The zero shifts (to move the zero to each part)
are put in subroutines with the Z axis equal to V84.
Before each tool is called, the appropriate variable
for that tool’s offset is transferred to V84. For ex-
ample, in event 15, VO is set equal to 80. This is
so we can perform operations on the 80 decade
of variables (V80-V89).

Event 16 is AUX 5041. This is a special AUX
code which does a direct transfer of a variable’s
value. There are several special AUX codes
(discussed later) which are used in conjunction
with variables. These AUX codes all have 4 digits.
The first two digits determine the type of opera-
tion to be performed. In the case of AUX 5041,

&£000 &000

the digits 50 indicate the operation is a direct
transfer. The last two digits (41) represent the
variables on which the operation is being per-
formed. Since VO equals 80, the variables being
used are 84 and 81 (from 5041). The direct transfer
is made from variable 81 into variable 84 or V84
is made equal to the value of V81. In this case V81
equals — 1.345. After the AUX 5041 is executed,
V84 will equal — 1.345. Before Tool 2 is activated,
an AUX 5042 is programmed. Similarly, this sets
V84 as equal to the value of V82 (which is tool 2’s
offset). After this AUX code is executed, V84 will
equal —2.345. Before Tool 3 is activated AUX 5043
makes V84 equal to — 3.345. By using this method,
the same subroutine can be used to shift zero for
all 3 tools and if an offset is changed, only one
event will need to be edited.

&

£

&

SECTION 2b:
CALLING SUBROUTINES USING VARIABLES

Section 2b

Pg.8

The next example will use a new AUX code to
further shorten the same program. Events 17-30
and 32-45 and 47-59 are similar. Instead of pro-
gramming CALL 1, CALL 2, CALL 3, and TOOL
1, TOOL 2, TOOL 3, a variable will be used instead
of the numbers 1, 2, 3. This is so a subroutine can
be created.

MAIN PROGRAM SUBROUTINE

1. V81 =-1.345 SUB 1—SUB 7 remains
the same.

2 V82 = —2.345 800. SUB 8

3 V83 = —3.345 801. TOOL V85

4. T1001 802. CALL V85

& FLAE 803. CALL4

6 T1002 804. CALL vs85

7. Z\V82 805. CALL5

8. T1003 806. CALL V85

9. 2ZV83 807. CALL6

10. A1101 808. CALL vs85

11. X0 YO0 Z0 809. CALL7

12. TO 810. CALL V85

13. Z0 RA Silil=NE0

14. X0 YO RA 812. Z0 RA

15. V0 =80 813. X0 YO RA

16. A5141 814. END

17. V85 = .0001

18. CALLS

19. A5751 (V85 = .0002)
20. A5142 (V84 = V82)
21. CALL8
22. A5751
23. A5143
24. CALL8
25. END

Up through event 16 the program is the same.

Event 17 sets the Variable 85 equal to .0001 (in- &

ternally the decimal point is not seen so
V85 = 001). When SUB 8 is called, V85 equals
1 s0 Tool V85 means Tool 1 and Call V85 means
Call 1.

Then a new AUX code (5751) is programmed.
The first 2 digits (57) mean “‘add to a variable”’.
The last two digits (51) mean “‘add to V85 the
number 1 (51)”. Since V85 equals 1, now V85
equals 1 + 1 = 2. Any digit (1-9) can be added to
a variable in this fashion. Since V85 now equals
2, Tool V85 will mean Tool 2 and Call V85 will
mean Call 2. At Event 22, Aux 5751 will mean V85
equals V85 + 1.

Since V85 equals 2, after this AUX code is ex-
ecuted, V85 will equal 2 + 1 = 3. Now Tool V85
will mean Tool 3 and Call V85 will mean Call 3.

—

ection 3 Pg.9

SECTION 3:

AUX CODE DEFINITIONS FOR
MANIPULATING VARIABLES

Section 3

Pg.10

Listed below are AUX codes which perform
mathematical operations on variables. Examples
are given for each AUX code.

Aux 50—: Direct Transfer

This AUX code transfers the value of one
variable directly to another variable. For example:

V=80
2. V81=-.437
3. A5061

Step 1 makes VO equal to 80 so that functions
will be performed on the 80 decade of variables
(V80—V89). Step 2 makes V81 equal to — .437 so
we can say the value of V81 is —.437. Step 3
transfers the value of V81 (5061) into V86 (506l).

After executing this AUX code, V86 will also
equal —.437. The first two digits of the AUX code
(5061) define the operation to take place. This is
called a direct transfer operation. The third and
fourth digits (61) represent the two variables which
are being acted on. This AUX code 5061 should
be understood as “make V86 equal to the value
of V81”.

Another example would be:

1= Ve =30
2. \V33=16.25
3. AUX 5073

In this example, V37 is made equal to the value
of V33. After this AUX code is executed, V37 will
equal 16.25.

AUX 51—: Indirect Transfer

This AUX code enables the user to transfer the
value of a variable into a variable which has the
value of another variable. For example:

N0 =80

2=\ R=0037
3. V37=-1.150
4. AUX 5121

In this example, V81 is set to the number 37.
Variable 37 is equal to —1.150.

The AUX code 5121 means Variable 82 (5121)
is now equal to the value of the variable in V81
(5121). The value of V81 is 37. The value of V37
is —1.150. So after this AUX code is performed,
V82 will equal — 1.150. This enables the user to
transfer the value of a variable from one decade
to another. In this example we transferred the
values of V37 to V82. Another example is as
follows:

i. V0=60

2. V66 =0015
3. Vi15=.220
4. A5176

This AUX code means ‘“make V67 (5176) equal
to the value of the variable in V66 (5176)"’. Since
V66 equals 15 and the value of V15 equals .220,
after this AUX code is executed V67 will equal
.220.

AUX 52—: Indirect Transfer

This AUX code works similar to AUX 51— ex-
cept the transfer is made from the fourth digit in-
to the variable which is the value of the third digit.
Example:

o W =oEs
2. V23=88
3. V0=20
4. A_237

In this example, V23 is set equal to the number
88. The AUX code 5237 means “make the variable
which is the value of V23 (5237) equal to the value
of V27 (5237)” or “V88 (which is the value of V23)
equal to the value of V27"’ (or V88 = .125). Another
example:

1. V42 =0016
2 V43 = 2.625
3. V0=40

4. A5223

This program means “make the variable whose
value is in V42 equal to the value of V43" (or make
V16 = 2.625).

“

Section 3

Pg.11

AUX 53—: Addition

This AUX code simply means ‘“‘add the value
of the variable in the third digit to the value of the
variable in the forth digit and store the sum in the
variable of the third digit”. For example:

E==V86: =375
2. V87=.125
S =80

4. A5367

This would perform the addition of V86 and V87
and store the results in V86. This means V86
equals V86 + V87 or V86 = .500.

Another example would be:
1. V62=-25

2= VB3 =70
3. VO =860
4. AB323

In this example, after the AUX code is executed,
V62 will equal (—2.5) + (7.0) = 4.5.

In the next example we will use several AUX
codes to perform a desired operation. Let’s say
we want to add the value of V68 and V83 and store
the results in V79. The program could be written:

1. V68=6.

2 R\[B3 =5

3. V84 =0068

4. V0=80

5. A5154 (V85 is equal to the variable whose value

is in V84; V85 equals V68 = 6.000)

6. A5353 (V85 equals V85 + VB3 =6 +5=11)

7. V84 =0079

8. A5245 (Variable whose value is in V84 is equal to
V85, V79 = 11)

AUX 54—: Subtraction

This AUX code subtracts the value of the
variable in the fourth digit from the value of the
variable in the third digit. Example:

1. V0=80
2. V84=66
3. V83=30.
4. Ab5443

After this AUX code is executed, C84 will equal
36. (AUX 5443 means V84 is equal to V84 — V83
or V84 = 66 — 30 = 36). Another example is:

1. V0=10

2. Vi1l=-8.
3 VP ==5
4. AUX 5412

This program will make V11 (5412) equal to
V11 — V12; or V11 equals (=6.) — (- .5) = —65.

AUX 55—: MULTIPLICATION

This AUX code multiplies the value of the
variables in the third and fourth digit and stores
it as the value of the variable of the third digit.
Example:

===V Gr=280

2. V81 =2562
3. V82 =.0003
4. A 5512

This program will make V81 equal to V81 times
V82, or V81 = 7.686. Caution: the control does not
recognize the decimal point. Multiplication or divi-
sion can cause a digit over flow. In the example
above the control multiplies the numbers
25620 x 3 = 76860.

AUX 56—: DIVISION

This AUX code divides the value of the variable
in the third digit by the value of the variable in the
fourth digit and stores the result as the value of
the third digit. Example:

- =—=VG =80

2. V85=3.

3. V86 =0002
4. AS5656

After this program is executed V85 will be = to
1.500. Caution: the control does integer division
only. The decimal point is ignored and if there is
a remainder the quotient is truncated and not
rounded. For example if you divide .0008 by .0003
the result will be .0002 because the answer
0002666 is truncated and not rounded.

Section 3

Pg.12

AUX 57—: ADD IMMEDIATE

This AUX code will add the number in the fourth
digit to the value of the variable in the third digit.
Example:

@ =80
2. V81=0
S DEES

4. Aux 5713
S5=End

After this program is executed V81 will equal
0015 because the digit 3 has been added to the
value of V81 5 times. V81 equals
0+3+3+3+3+3=15.

This AUX code can be used to keep a counter
on the number of times a loop has been com-
pleted. For example:

V80 =0
V82 =0
DO 85
Call 3
Aux 5721
End

DN ORI e

While this program is running the value of V82
can be viewed by pressing display position (turn
it off), then press V82 and its value will be
displayed.

AUX 58—: SUBTRACT IMMEDIATE

This AUX code works similar to AUX 57— ex-
cept the number in the fourth digit will be sub-

tracted from the value of the variable in the third

digit. Example:
1. VO=10

2. V12 =0020
3. A5821

After this program is executed, V12 will equal
0019. Another example:

1. VO=30
2. V35=-0018
3. A5856

After this program is executed, V35 will equal
—24o0r(-18)-6= - 24

AUX 59—: NEGATE

This AUX function multiplies the value of the
variable in the fourth digit by — 1 and stores it as
the value for the variable in the third digit.
Example:

o —WICI=5)
2V 85I=0-375
3. AB965

After this program is executed, V86 will equal
—-2375 and V85 will remain equal to 2.375.
Another example:

1. VO =80
2. V89 = -.0625
3. A5999

After this program is éxecuted, V89 will equal
+.0625 or —.0625 x —1 = +.0625).

SECTION 4:

LOGIC TESTING
PERFORMED ON VARIABLES

Section 4

Pg.14

Six different tests can be performed on the con-
tents of a variable and, depending on if the test
is true or false, another variable is set equal to
1 or O respectively. This is usually used as a con-
ditional test to do something or not depending on
the value of a variable. Examples are given after
each of the six tests are defined.

AUX 60AB — CHECK IFB=0

This AUX code will check the value of Variable
B and if it is equal to 0, this code will make variable
A equal to 1. If Variable B does not equal 0, then
Variable A will be set equal to 0. Example:

1. VO=80

2. V81 =0006
3. V82 =0002
4. Ab412

5. A6031

Event 4 will subtract V82 from V81 and store the
results in V81. Event 5 will check the value of V81
and if it is equal to zero, V83 will be set equal to
1. Since V81 — V82 will equal 4, V81 will not be
equal to 0 so V83 will be set equal to 0. Another
example:

1= ME=80
2. V82=6
3. V83=0
4. A5523
5. AB042

Event 4 will multiply V82 x V83 and store the
results in V82. Event 5 checks the value of V82
and if it equals 0, V84 will be set equal to 1. Since
V82 x V83 = 0, V82 will equal 0 and V84 will be
set equal to 1.

AUX 61AB — CHECK IF B Not =0

This AUX code checks the value of Variable B
and if it does not equal 0, Variable A is set equal
to 1. If Variable B does equal 0, Variable A will be
set equal to 0. Example:

sV G =80

2. V88=.500
BT =251
4. Ab5487

5. Ab487
6. AG6168

Event 4 will subtract V87 from V88 and store
the results in V88. Event 5 will again subtract V87
from the new value of V88 and store the results
in V88. Event 6 will check the value of V88 and
since V88 will not equal 0, V86 will be set equal
to 1.

AUX 62AB — CHECK IFB>0

This AUX code checks the value of Variable B
and if it is greater than 0, Variable A is set equal
to 1. If Variable B is less than or equal to O,
Variable A will be set equal to 0. Example:

1. VO =280

2. \V83=-.375
3. AB933

4. AB243

Event 3 will negate (multiply by — 1) the value
of V83 and then store the result in V83. Event 4
checks the contents of V83 and if it is greater than
0, V84 will be set equal to 1. Since
—1 x —.375 = .375 (which is greater than 0), V84
will be set equal to 1. If the results were equal to
zero, or less than zero, V84 would be set equal
to zero.

The remaining AUX codes for logic testing all
work similarly to these examples. Their definitions
are:

AUX 63AB — CHECK IF B< 0

If the value of Variable B is less than 0O, Variable
A is set equal to 1, otherwise Variable A is set
equal to 0.

AUX 64AB — CHECK IFB> =0

If the value of Variable B is greater than or equal
to 0, Variable A is set equal to 1, otherwise Variable
A is set equal to 0.

AUX 65AB — CHECK IFB< =0
If the value of Variable B is less than or equal

to 0, Variable A is set equal to 1, otherwise Variable i‘i

A is set equal to 0.

SECTION 5:

CONDITIONAL LOOPS AND BRANCHING
(GO TO STATEMENTS)

Section 5

Pg.16

The Crusader has the ability to execute or not
execute sections of a program dependent on the
value of a variable. The example used is one
where patterns of holes will be center drilled,
however, some of the holes will be drilled and
some will be counter bored.

. i
L4158 . £ | o ()} —— p—
615 () @___—__I: + C)
1000 — __G.)_|_ .____l.. e ®A;
T b () @— [‘ | 5 X 3,625 X G, FATE
a0 —|—— - ___11__‘__@__ ‘
1”"___/613._ | ‘ | |
2000 —1- & —l— @ ©—
ﬁ I \ |
L2 THRU B HOLES -&gﬂcgt!u*—/ o m'.u/ﬁ;'m::.c;g; Sy

ELGURE R

Instead of making several subroutines and call-
ing each one separately when needed, one
subroutine can be called and variables set to
make the program branch differently for different
tools. The program would be constructed as
follows:

TOOL 1 = SPOT DRILL
TOOL 2 = .281 DRILL
TOOL 3 = .406 END MILL

MAIN PROGRAM SUBROUTINE
1. T1001 100. Sub 1

25— "7 1034 101. Do V81

3. T1002 102. X5Y —.625 Z V82RA
4, Z-.345 103. Y —1.275 RA

5. T1003 104. X1.0Y -2.375 RA
6. Z-2.345 105. X1.50Y —1.275 RA
710 106. Y —.625 RA

8. ZORA 107. X1.0 Y - 1.0 RA

9. X -6.YORA 108. DO V83

10. TH 109. Y -.625 RA

11. V81 =.0001 110. Y —1.275 RA

12. V82= -.15 111. X 2.5Y -1.75 RA
13. V83 =.0001 112. End
4SR5 113. End

15 M2t 114. X 2.5Y — .625 ZV82RA
16. G81 115. Y-1.0 RA

17. Call 1 116. DO V83

Wk 2 117. X3.Y-1.0 RA
19. V82= -6 118. Y-3.0 RA

20. V83=0 119. X 3.275Y — .375RA
21. V20 10. 120. End.

22. V21 1 121. Do V81

23. Va3 .2 122. X 4.Y —1.75 RA
24. G83 123. Y 5.0 Y — 1.0 RA
25. Call 1 124. End

26. T3 125. X5.0 Y -.375 RA
27 =N Eilt=i 126. X4. RA

28. V82 = —.265 127. Y-3. RA

29. V20 6. 128. X5.0 RA

30. Va1 .1 129. G80

3. V22 1. 130. TO

32. G82 131. Z0 RA

33. Call 1 132. X-6.YO RA

34. End 133. End

Subroutine 1 contains the X Y coordinates of all
of the spot drill and hole locations. The spot drill
locations are programmed inside a do loop that
starts with DO V83. If V83 is set equal to 1 then
the do loop will be executed once. If V83 is set
equal to 0 then the do loop will be skipped and
not executed.

Any portion of a program can be skipped by
preceeding it with DO 0 and putting an END after
the last event you want to skip. If a subroutine call
is surrounded by a variable controlled do loop,
then the subroutine can be skipped or called
dependent on the value of the variable.

Note that after tool 1 spot drills all of the holes,
V83 is set equal to 0 so that when Subroutine 1
is called, the Do loops that contain the locations
for locations that are not to be drilled are skipped.
After tool 2 is used, V83 is also set equal to 0 so
that only the coordinates outside the conditional
do loops are executed with tool 3. The Z depth

is also controlled using V82 so that one subroutine wf

can spot, drill, and counterbore.

SECTION 6:

USER PROGRAMMABLE
MODAL SUBROUTINES
(CUSTOM MODAL CANNED CYCLES)

Section 6

Pg.18

If a canned cycle does not exist which you have
an application for, a custom canned cycle can be
written. If it is to be non-modal then a subroutine
would be created and called when desired in the
program. If it is to be modal, special programm-
ing techniques must be used.

As an example, the holes in the plate below will
be bored with a special cycle which will rapid in-
to the counter bore, feed through at 4 IPM and
feed out at 8 IPM.

v
5.000 |
- 4250 | l

3.000
2000 l

—— 1000 —‘-'[

== |
it L G

1700 | I

= .b,____ .H__._; .__

= SeEe=T =) _m[
1 | | 1 1 1 1 I
_lr__rl ___.I_r_.IJ__.IT_..T] o, l.‘___lj_ ==\
II } ‘I : i][l[: 1[.1‘50
L L = P
LIGURE &
MAIN PROGRAM SUBROUTINE

1= 100 100. Sub 9088

2. Z-1.234 101. Aux 9088

=6 102. End

4. ZORA 103. Sub 9588

5. X-=5.YO RA 104. XV27 YV28 RA

(5% == 3F] 105. Z - .4 RA

7. GB88 106. F 4.

8. X1.Y-.75RA 107. Z- 1.3 FA

9. Y-15RA 108. F 8.

10. X2. RA 109. Z- 4 FA

11. X3. RA 110. Z .1RA

12. Y-25RA 111. End

13. X4.25 RA

14. Y-15RA

15N =75 RA

16. G80

1Tl ®

18. ZO RA

19. X-5. YO RA

20. End

In this example the holes have been drilled and
counterbored and the boring operation is all that
is required. Event 7 activates G88. This is a user
definable modal G code. There is no G88 code
in the Crusader’s internal software. A user pro-
grammable G88 code can be constructed as
follows:

When a G88 event is read by the control in
event 7, the control will react as if a call 9088 had
been programmed. The programmer creates
subroutine 9088 which contains the instruction
AUX 9088. This special AUX code will make the
control look ahead in the program for the next X
Y Z command and store the X command in V27,
the Y command in V28 and the Z command in
V29. If the commands are incremental, they will
be converted and stored in absolute.

This AUX code then calls subroutine 9588
which the programmer creates and which con-
tains the motion desired in the canned cycle.
Notice that the event 104 is: X, V27, YV28, RA.
This will cause motion to the XY position that the
control looked ahead to find. This sequence of
looking ahead for the next XY coordinate, storing
it in V27 and V28, then executing subroutine 9584
is repeated automatically until a G80 is reached
in the program.

This modal subroutine programming can be us-
ed with features like Rotation, Scaling, and Bolt
Circles.

This concludes the Advanced Variable Program-
ming section. If you have any further questions
or require more expert assistance, please feel free
to contact our Applications Engineering depart-
ment at Anilam Electronics Corp., 5625 N.W. 79th
Ave., Miami, Florida 33166. (305)592-2727.

ANILAM CRUSADER PROGRAM SHEET

OF

~ ATORDRWG. # PROGRAMMER DATE
TOOL LIST OFFSETS SETUP INSTRUCTIONS
B %R | s " w s
1 K
2 2
3 3
4 4
5 5
8 6
7 7
8 8
9 9
0 0
1 1
2 2
3 3
4. 4,
5 5
6 6
7 7
8 8
. 9
0 l 0

aniam Anilam Electronice Cormaratinn 5005 MWW 70tk Avaniio

RAinmi Elarida 20428 | (NEY EOD O7MY7 1 Talaw AC

AV A

